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Abstract. Explaining the results of Machine learning algorithms is
crucial given the rapid growth and potential applicability of these methods
in critical domains including healthcare, defense, autonomous driving,
etc. In this paper, we address this problem in the context of Markov
Logic Networks (MLNs) which are highly expressive statistical relational
models that combine �rst-order logic with probabilistic graphical models.
MLNs in general are known to be interpretable models, i.e., MLNs can
be understood more easily by humans as compared to models learned by
approaches such as deep learning. However, at the same time, it is not
straightforward to obtain human-understandable explanations speci�c to
an observed inference result (e.g. marginal probability estimate). This is
because, the MLN provides a lifted interpretation, one that generalizes to
all possible worlds/instantiations, which are not query/evidence speci�c.
In this paper, we extract grounded-explanations, i.e., explanations de�ned
w.r.t speci�c inference queries and observed evidence. We extract these
explanations from importance weights de�ned over the MLN formulas that
encode the contribution of formulas towards the �nal inference results.
We validate our approach in real world problems related to analyzing
reviews from Yelp, and show through user-studies that our explanations
are richer than state-of-the-art non-relational explainers such as LIME.

1 Introduction

Markov Logic Networks (MLNs) [1] are popular Statistical Relational Models
that combine �rst-order logic with probabilistic graphical models [10]. The power
of MLNs comes from the fact that they can represent relational structure as
well as uncertainty in a highly compact manner. Speci�cally, an MLN represents
real-world knowledge in the form of weighted �rst-order logic formulas. Unlike
traditional �rst-order logic based representations, MLNs allow uncertainty in
the represented knowledge, where weights attached to the formulas encode
this uncertainty. Larger weights indicate more belief in a formula as compared
to smaller weights. The MLN de�nes a template that can be grounded with
real-world constants, to obtain a probability distribution over possible worlds
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- an assignment to all ground variables - of the MLN. Due to its generality,
MLNs have found applications in varied practical problems such as coreference
resolution [13], information extraction [12, 23], question answering [8], event-
detection in videos [22], etc.

One of the key advantages of MLNs is their interpetability. Speci�cally, since
MLN models are �rst-order logic based models, it is quite easy for a human
user to understand and interpret what the learned model represents. In contrast,
methods such as deep learning can achieve state-of-the-art results in language
processing, computer vision, etc., but their lack of interpretability is problematic
in many domains. However, interpretability of learned models is not the same as
explainability of results generated by a Machine learning method. Guidotti et
al. [5] provide a detailed survey of explanations in ML methods in which they
categorize explanations as model explanations and outcome explanations. The
former provides explanations for the model (interpretability of the model) while
the latter provides explanations for predictions. Of late, there has been a lot of
interest in outcome explanations [6]. For instance, in healthcare applications, a
doctor would require a system that explains why it is recommending a particular
action, rather than just provide results as a \black-box". Some ML methods such
as decision trees are both interpretable and explainable, while some are neither
(e.g. deep networks). It turns out that MLNs though interpretable are not easily
explainable. Recently proposed approaches such as LIME [15] try to explain the
results of a classi�er whose results are typically hard-to-understand. However,
these approaches are speci�c to non-relational data, and do not provide rich,
relational explanations (for e.g. LIME explains non-linear classi�ers as linear
models). Our focus in this paper is to explain relational inference in MLNs in a
human-understandable form.

Our main idea is to generate explanations for queries in terms of a ranking
of formulas based on their importance. Speci�cally, MLN formulas have weights
attached to them that intuitively signify their importance, i.e., for a formula f

with weight w, a world where f is true is ew more likely than a world in which it
is false [1]. Note that the formula weights do not have a well-de�ned probabilistic
interpretation if they are dependent on each other, i.e., if atoms in one formula
also occur in other formulas [1]. More importantly, the weights are tied, which
means that any instantiation of a formula has the same weight. Thus, a naive
explanation for a query that can be obtained by ranking formulas purely on their
weights is not likely to be useful since it is generic across all possible worlds.
That is, the explanation will remain unchanged even when the query or evidence
variables change. For example, consider the task of classifying if an email is
spam or not. An MLN could encode a formula such as Word(e; +w) ) Spam(e).
The + symbol preceding a variable is a short-hand representation to denote
that the MLN stores a di�erent weight for every distinct grounding of the w

variable (which represents the domain of words). Suppose the query predicate
is Spam, we would want di�erent explanations for di�erent groundings of the
query predicate based on the speci�c evidence on the Word predicate. Further,
suppose the evidence is incomplete, meaning that there are some atoms that are
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not query atoms and whose truth value is not known. For formulas containing
such atoms, it becomes even harder to determine their inuence on a query since
we need to consider all possible worlds where the unknown atoms are true as well
as the cases where the atoms may be false. We propose a systematic approach for
explanations where we learn importance weights for formulas based on samples
generated from the MLN. Speci�cally, we perform inference using Gibbs sampling,
and learn the importance of formulas for a speci�c query based on their inuence
in computing the Gibbs transition probability. Thus, as the sampler samples
possible worlds consistent with the observed evidence, the importance weights
capture the inuence of formulas on the query variable in these worlds.

We evaluate our approach using two MLN applications we designed for
performing inference in real-world review data from Yelp. In the �rst application,
we predict if a review is a spam review and provide explanations for this prediction.
In the second application, we predict the sentiment of a review that has missing
words. For both cases, we develop MLNs that encode common knowledge and use
our approach to extract explanations from the MLNs. We set up a comprehensive
user-study consisting of around 60 participants and compare our explanations with
explanations given by LIME for the same tasks. We clearly demonstrate through
these studies that our explanations are richer and more human-understandable
than the explanations given by LIME.

2 Background

2.1 Markov Logic Networks

Markov logic networks (MLNs) are template models that de�ne uncertain, re-
lational knowledge as �rst-order formulas with weights. Larger the weight of a
formula, more likely is that formula to be true. 1 weight formulas are treated
as hard constraints which should always be true. Similarly formulas with �1
weights are always false. Thus, MLNs o�er a exible framework to mix hard
and soft rules. Given a set of constants that represent the domains of variables
in the MLN, an MLN represents a factored probability distribution over the
possible worlds, in the form of a Markov network. A world in an MLN is an
assignment of 0/1 to all ground atoms of the MLN (�rst order predicates in the
MLN whose variables have been substituted with a constant). Speci�cally, the
MLN distribution is given by,

P (!) =
1

Z
exp

 

X

i

wiNi(!)

!

(1)

where wi is the weight of formula fi, Ni(!) is the number of groundings of
formula fi that evaluate to True given a world !, and Z is the normalization
constant.

As a simple example of an MLN, suppose we want to encode the fact that
smokers and asthmatics are not friends. We would design an MLN with a
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formula such as Smokes(x) ^ Friends(x; y) ) :Asthma(y). Given constants
corresponding to the variables, x and y, the MLN represents a joint distribution
over all ground atoms of Smokes, Friends, and Asthma. The two key tasks in
MLNs are weight learning, which is the task of learning the weights attached
to the formulas from a training relational database, and inference (prediction).
Learning the weights of an MLN is typically based on Max-likelihood estimation
methods. The marginal estimation inference task involves computing the marginal
probability distribution of a ground atom in the MLN given an evidence database
of observed variables. For example computing the probability that Smokes(Ana) is
true given that Smokes(Bob) is true, Friends(Ana; Bob) is true and Asthma(Bob)
is false. Since computing this probability exactly is hard, one of the most popular
approaches is to use Gibbs sampling [4] to approximate the marginal probability.

2.2 Related Work

Explaining the results of Machine learning models has been recognized as a
critical area. Guidotti et al. [5] provide a detailed survey of explanations in
ML. Speci�cally, they categorize them (among others categories) into model
explanations and outcome explanations. The former provides explanations for the
model while the latter provides explanations for predictions. In this paper, we are
primarily concerned with outcome explanations. Recently, there have been a few
signi�cant attempts to develop model-agnostic outcome explanations. Notable
among these are LIME developed by Ribeiro et. al. [15] which can provide an
explanation of any classi�er, by approximating it locally with an interpretable
model. More recently, they developed \Anchors" [16], a model-agnostic explainer
with if-then rules. Ross et al. [17] developed a regularizer to obtain simpler
explanations of a classi�er’s decision boundary. Koh and Liang [9] addressed the
explainability problem by perturbing the importance of training examples and
observing their inuence on prediction. Similarly, Fong and Veladi [3] also use
perturbations to explain predictions. Teso and Kersting [21] recently developed
explanations for interactive learners. Though neural networks su�er from lack of
interpretability in general, there have been attempts to explain the model through
visual analytics, such as Grad-CAM [18] and the more recent work by Zhang
and Zhu [24]. However, none of these techniques are applicable to relational data
which is the focus of this paper. Speci�cally, in relational data there is a single
example that is interconnected, and is therefore fundamentally di�erent from the
type of data addressed in the aforementioned methods. Related to propositional
probabilistic graphical models, more recently, Shih et al. [20] compiled Bayesian
networks into a more interpretable decision tree model.

3 Query Explanation

Our approach is to extract explanations for a query as a ranked list of MLN
formulas, where the ranking encodes the inuence of the formula on that query.
Before we formally describe our approach, we motivate it with an illustrative
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the formula changes the inuence that the other formulas have on the marginal
probability. Further, even though f3 has a higher weight, its inuence on the
query R(X1) is in fact smaller than that of f2, even in the case where we have no
evidence. Thus, we cannot analyze weights of the formulas independently of each
other when the atoms are shared among di�erent formulas, since the weights on
one formulas can a�ect the other formulas.

On adding evidence as speci�ed before, the inuence of all three formulas
are modi�ed as shown. Further, if we assume a di�erent evidence (speci�ed
as E2 in Fig. 1) where S1(X1) is true and the other atoms of S1 and S2 are
unknown (they can be either true or false), then f3 has a larger inuence than
the other formulas. Thus, depending upon the evidence as well as the speci�c
query we are looking at, each formula has a di�erent inuence on the overall
marginal probability. For small examples such as the aforementioned one, we can
go over each possible world that is consistent with the evidence and the query,
and compute the inuence of each formula on the marginal probability of the
query. However, this is not practically feasible for large problems. Therefore, we
develop a practically feasible solution where we compute the importance based
on samples drawn from the distribution over the possible worlds.

To formalize the above example, we �rst start with some notation. Let f1 : : :

fk be the k formulas in the input MLN M. Let w1 : : : wk be weights associated
with each of these formulas respectively. Let Q represent the query predicate,
and let E represent the set of evidence atoms (atoms whose truth assignment is
known). Let q1 : : : qm denote the instantiations or ground atoms corresponding
to the query predicate. Note that, for the sake of of clarity, we assume that we
have a single query predicate, however, it is straightforward to include multiple
query predicates.

3.1 Sampling

In standard Gibbs sampling for MLNs, we start with a random assignment to all
atoms !(0) in the MLN except the evidence atoms whose assignments are �xed
as given in E. In each iteration of Gibbs sampling, we choose a non-evidence
atom based on a proposal distribution �, and compute an assignment to this
atom by sampling the assignment based on its conditional distribution. In our
case, we assume that � is a uniform distribution, which means that we sample
non-evidence atoms randomly in each iteration. From the generated samples, we
estimate the marginal probabilities of P (q1) : : : P (qm) as,

P (�qi) =
1

T

T
X

t=1

I(!(t) � �qi) (2)

where T is the total number of samples, !(t) � �qi denotes that the assignment
to atom qi in !(t) is consistent with �qi. Without loss of generality, we assume
that �qi refers to the true (or 1) assignment to qi. Thus, to compute the marginal
probability for qi, we need to compute the ratio of the number of samples where
the qi was equal to true (or 1) and the total number of samples collected.
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Suppose we choose to sample a query atom, qi in an iteration of Gibbs
sampling, the main task is to compute the conditional distribution P (qij!

(t�1)nqi),
where !(t�1) n qi is the set of assignments to all atoms except qi in the sample
at iteration t � 1. Once we compute the conditional distribution, we sample the
assignment for qi, say qi from the distribution, and the subsequent sample !(t)

= !(t�1) [ qi. The conditional distribution to be computed in an iteration is
given by,

P (�qij!
(t�1) n qi) = exp

X

j

wjNj(!
(t�1) n qi [ �qi) (3)

where Nj(!
(t�1) n qi [ �qi) is the number of satis�ed groundings in the j-th

formula given the assignment !(t�1) n qi [ �qi.
We now de�ne the importance distribution for a query atom qi, Q(qi) as

follows. In each step of Gibbs sampling, where qi is satis�ed, we measure the
contribution of each formula to the Gibbs transition probability. Speci�cally, for
a formula fk, its contribution to the transition probability is proportional to
exp(wjNj(!

(t�1) n qi [ �qi), if qi is the atom being sampled in iteration t. However,
since we consider both cases in the conditional probability, namely, the assignment
1 (or true) to �qi as well as the assignment 0 (or false) to �qi, we would like to
encode both these into our importance function. To do this, we compute the log
odds of a query atom, and score the inuence of a formula on the query based
on its contribution in computing its log-odds.

Formally, let !(t�1) be the Gibbs sample in iteration t � 1. Suppose we are
sampling the query atom qi, we compute the log-odds ratio between the Gibbs
transition probability for qi = 0 and qi = 1. This is given by the following
equation,

log
P (qi = 1j!(t�1) n qi)

P (qi = 0j!(t�1) n qi)
=

X

j

wjNj(!
(t�1) n qi [ fqi = 1g)

�
X

j

wjNj(!
(t�1) n qi [ fqi = 0g) (4)

log
P (qi = 1j!(t�1) n qi)

P (qi = 0j!(t�1) n qi)
=

X

j

wj(Nj(!
(t�1) n qi [ fqi = 1g)

� Nj(!
(t�1) n qi [ fqi = 0g) (5)

We then update the importance weight of the j-th formula w.r.t query qi as

Q
(t)
j (qi) / wjNj(!

(t�1) n qi [ fqi = 1g) � wjNj(!
(t�1) n qi [ fqi = 0g) (6)
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We update all the importance weights for qi denoted by Q(t)(qi) = Q
(t)
1 (qi),

: : : Q
(t)
k (qi) corresponding to the formulas 1 through k in every iteration where

qi is sampled. The importance weight for Q
(t)
j (qi) after sampling qi T times is

given by,

Qj(qi) =
1

T

T
X

t=1

Q
(t)
j (qi) (7)

Theorem 1. As T ! 1,

log
P (qi = 1)

P (qi = 0)
/
X

j

Qj(qi) (8)

Proof.

log
P (qi = 1)

P (qi = 0)
=

X

!

log
P (! � qi = 1)

P (! � qi = 0)

/
X

!

X

j

wj(Nj(! � qi = 1)

� Nj(! � qi = 0))

/
X

!

X

j

wj(Nj(! � qi = 1)

�
X

j

Nj(! � qi = 0)) (9)

where ! � qi = 1 are worlds consistent with the known evidence as well as qi = 1,
and ! � qi = 0 are worlds consistent with the known evidence qi = 0. Further

E[Qj(qi)] =
X

!

wj(Nj(! � qi = 1) � wjNj(! � qi = 0)) (10)

as T ! 1, Q
(t)
j (qi) ! E[Qj(qi)], since we are estimating the expectation from

worlds consistent with the MLN distribution. Therefore, as T ! 1,
P

j Q
(t)
j (qi)

P

j E[Qj(qi)] which is equal to the log-odds ratio log
P (qi=1)
P (qi=0)

Interestingly, it turns out that in some cases, the importance weights can be
obtained without sampling multiple worlds. Speci�cally, we can show that,

Proposition 2. If the evidence is complete, i.e., every non-query atom is known

to be either true or false, and if every ground formula in the MLN contains

exactly one query atom, then E[Qj(qi)] = wjNj(! � qi = 1) � wjNj(! � qi = 0),
where ! is any world consistent with the known evidence.
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Algorithm 1: Explaining Inference

Input: MLN M, Evidence E, Query atoms Q

Output: Ranking of formulas in M for each qi 2 Q

1 Initialize the non-evidence atoms in !(0) randomly
2 for t = 1 to T do

3 X = Choose a non-evidence atom in !(t) uniformly at random

4 Flip X in !(t) to compute the conditional distribution P (Xj!(t) nX)

5 Sample X from P (Xj!(t) nX)
6 if X 2 Q then

7 for each fj in M do

8 Update the importance weight Q
(t)
j (X)

9 for each qi 2 Q do

10 Explain qi as a ranked list of formulas f1 : : : fk based on importance
weights in Q(qi)

The above proposition implies that, in MLNs where the evidence is fully spec-
i�ed over the non-query atoms, and every query atom occurs in an independent
subset of ground formulas in the MLN, we can derive the importance weights
directly from the speci�ed evidence. However, in cases where the evidence does
not cover all the ground atoms, or more than one query atom occurs in a ground
formula, we cannot infer its importance without sampling the possible worlds.
Note that in general, instead of using Gibbs sampling to generate the possible
worlds, we can use Marginal-MAP inference to sum-out the unknown atoms,
and then derive the explanations using the evidence. However, marginal-MAP is
considerably more expensive [19]. Another strategy is to use the MAP assignment
for the unknown atoms. However, this is problematic when we have a signi�cant
number of unknown atoms, and if the distribution is multi-modal since, we are
essentially considering a single world. A third strategy is to use belief propagation.
However, the unknown atoms is again problematic in this case since we need to
sum out those atoms to derive the belief propagation messages, and for large
number of unknown atoms, this can be extremely expensive. Thus, our sampling
strategy allows us to estimate the importance weights in a computationally
feasible manner.

Algorithm 1 summarizes our approach. First, we initialize all non-evidence
atoms in the MLN randomly. In each iteration, we select a non-evidence atom
uniformly at random, and compute the conditional distribution for that atom
given the state of all other atoms. Based on this conditional probability, we
sample a new assignment for the sampled atom. If the sampled atom is a query
atom, for each formula, we compute its importance weight for that query in the
current word using Eq. (6). We update the importance weight using Eq. (6). Once
the marginal probabilities in the Gibbs sampler converge, we �nally compute a
explanation for the marginal probability obtained for each query atom by ranking
the formulas in descending order of the importance weights speci�c to that query.




